quite a different order of ideas - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

quite a different order of ideas - vertaling naar russisch

CARDINALITY OF A GROUP, OR WHERE THE ELEMENT A OF A GROUP IS THE SMALLEST POSITIVE INTEGER M SUCH THAT AM = E
Order of a group; Group order; Order (group); Order of a group element; Finite order

quite a different order of ideas      
совсем другие мысли
finite order         

математика

конечный порядок

knightly order         
  • Spanish]] orders of chivalry. In the centre, the [[Order of the Golden Fleece]], 1820
  • Investiture of three new members of the Order of the Knot (miniature from the order's statutes, 1352/4).
ORDER, CONFRATERNITY OR SOCIETY OF KNIGHTS
Knightly orders; Knightly order; Orders of Chivalry; Orders of Knighthood; Orders of knighthood; Orders of chivalry; Order of knighthood; Chivalric orders; Chivalric Orders; Dynastical order; Confraternal order; Knightly Orders; Order of Chivalry; Knightly Order; Chivalric order
рыцарский орден

Definitie

КОФЕРМЕНТ А
(КоА) , сложное природное соединение, один из важнейших коферментов. В живых клетках участвует в реакциях окисления, синтеза жирных кислот, липидов и др.

Wikipedia

Order (group theory)

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.

The order of a group G is denoted by ord(G) or |G|, and the order of an element a is denoted by ord(a) or |a|, instead of ord ( a ) , {\displaystyle \operatorname {ord} (\langle a\rangle ),} where the brackets denote the generated group.

Lagrange's theorem states that for any subgroup H of a finite group G, the order of the subgroup divides the order of the group; that is, |H| is a divisor of |G|. In particular, the order |a| of any element is a divisor of |G|.

Vertaling van &#39quite a different order of ideas&#39 naar Russisch